Iteratively constructive sequential design of experiments and surveys with nonlinear parameter-data relationships

نویسندگان

  • T. Guest
  • A. Curtis
چکیده

[1] In experimental design, the main aim is to minimize postexperimental uncertainty on parameters by maximizing relevant information collected in a data set. Using an entropy-based method constructed on a Bayesian framework, it is possible to design experiments for highly nonlinear problems. However, the method is computationally infeasible for design spaces with even a few dimensions. We introduce an iteratively constructive method that reduces the computational demand by introducing one new datum at a time for the design. The method reduces the multidimensional design space to a single-dimensional space at each iteration by fixing the experimental setup of the previous iteration. Both a synthetic experiment using a highly nonlinear parameter-data relationship and a seismic amplitude versus offset (AVO) experiment are used to illustrate that the results produced by the iteratively constructive method closely match the results of a global design method at a fraction of the computational cost. This work thus extends the class of iterative design methods to nonlinear problems and makes fully nonlinear design methods applicable to higher dimensional real-world problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential Bayesian optimal experimental design via approximate dynamic programming

The design of multiple experiments is commonly undertaken via suboptimal strategies, such as batch (open-loop) design that omits feedback or greedy (myopic) design that does not account for future effects. This paper introduces new strategies for the optimal design of sequential experiments. First, we rigorously formulate the general sequential optimal experimental design (sOED) problem as a dy...

متن کامل

Numerical Approaches for Sequential Bayesian Optimal Experimental Design

Experimental data play a crucial role in developing and refining models of physical systems. Some experiments can be more valuable than others, however. Well-chosen experiments can save substantial resources, and hence optimal experimental design (OED) seeks to quantify and maximize the value of experimental data. Common current practice for designing a sequence of experiments uses suboptimal a...

متن کامل

OPTIMAL DESIGN OF DOUBLE LAYER GRIDS CONSIDERING NONLINEAR BEHAVIOUR BY SEQUENTIAL GREY WOLF ALGORITHM

The present paper tackles the optimization problem of double layer grids considering nonlinear behaviour. In this paper, an efficient optimization algorithm is proposed to achieve the optimization task based on the newly developed grey wolf algorithm (GWA) termed as sequential GWA (SGWA). In the framework of SGWA, a sequence of optimization processe...

متن کامل

Magneto Prandtl nanofluid past a stretching surface with non-linear radiation and chemical reaction

In this article, we examined the behavior of chemical reaction effect on a magnetohydrodynamic Prandtl nanofluid flow due to stretchable sheet. Non-linear thermally radiative term is accounted in energy equation. Constructive transformation is adopted to formulate the ordinary coupled differential equations system. This system of equations is treated numerically through Runge Kutta Fehlberg-45 ...

متن کامل

Adaptive Sequential Design for Optimal Scheduling of Continuous ASL Data Acquisition

Introduction: It has been demonstrated that Optimal Sampling Schedule (OSS) theory [1] can be used as an objective strategy for choosing a TI sampling scheme in pulsed arterial spin labelling (PASL) experiments, yielding an improvement in parameter estimation precision [2]. However, this requires a priori estimates of the likely value of the fitted parameters. Adaptive Sequential Design (ASD) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009